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Summary 

In the frame of a linear elastic material compression of a cracked plane is considered. Friction during a mutual 
sliding of the crack surfaces can be responsible for some non-linear effects, in particular, for hysteresis. A 
rigorous solution to the problem of non-axisymmetric compression of a space weakened by a circular crack with 
dry friction is given. This solution is obtained in displacements and the field of displacements is represented in 
elementary functions. 

1. Introduction 

Compression of an elastic plane weakened by a rectilinear slit with the presence of dry 
friction was studied in [1]. By now the contact problem for the elastic plane with a cut is 
well understood [2]. The solution of contact problems with allowance for friction depends 
essentially on the order of application of the external loads [3]. In Section 2 of the present 
paper the influence of external-loading history is investigated for the stress-strain state of 
an infinite plane with a crack. It is shown quantitatively that the presence of friction 
between the crack surfaces can be responsible for hysteresis of the cracked medium. An 
elastic space with a circular slit which is compressed by a uniformly distributed load 
applied in the axial direction was investigated in [4]. In Section 3 of the present paper 
non-axisymmetric compression of the space with a circular crack is studied. After this the 
ideas of Section 2 can be extended to the three-dimensional case. 

2. Influence of external-loading history on stress-strain state of a cracked medium in the 
presence of friction 

2.1. External-loading history consideration 

We consider the following problem. An elastic plane is weakened by a mathematical 
cut along the real-axis segment Ixl ~< 1. The plane is subjected at infinity to the action of a 
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uniformly distributed shear load X~ = T. Under this load the crack contour is free of 
external stresses. The complex potentials ¢ (z )  and f~(z) associated with the stresses and 
displacements by the Muskhelishvili formulae take the following form in this case [5]: 

gO, ( z ) = - iT (  z 2 - l 2 ) - 1 / 2 z / 2  + i T I 2 ,  

~l  ( z ) = iT (  z 2 - 12 ) -  ' / 2 z / 2  - i T / 2 .  

Now let an additional uniformly distributed compressive load Yy~ = - P  be applied. The 
solution to the problem of the complex loading at infinity, q'12 and ill2, may be 
represented in the form of a sum q'12 = ¢~ + q>2, fl~2 = fl~ + f12; we seek 4~2 and f22 from the 
boundary conditions 

(Yy2 - iXy2) += (Yy2 - i X y 2 ) - ,  (u'2 + iv2) += (u~ + iv ; ) - ,  Ixl < 1, (1) 

where + and - denote the limiting values of a function. The crack surfaces are shifted 
owing to shear, but we neglect this in writing the boundary conditions (1); we prescribe 
the boundary conditions on the undeformed contour. It is evident that g>2(z)= - P / 4 ,  
f~2(z) = - 3 P / 4 .  

On the crack contour 

T(K+ 1) (12_ x2)1/2 
Yy~2 = - P ,  X~2 = 0, u~- 2 - u,2 - 2l t 

where r = 3 - 4v, v is Poisson's ratio. 
Let us consider the problem with the reverse order of external-load application. Since 

the crack is perpendicular to the line of action of the compressive forces, the boundary 
conditions at the first stage will be adhesion conditions of the form (1). When the shear 
load T is applied, the adhesion condition for the crack surfaces is preserved if T < fP ,  
where f is the friction coefficient. In this case 

~34 = - - P / 4 ,  ~'~34 = - 3 P I 4  - iT ,  Yy~3,1 = - - P ,  Sy~4 = T ,  u~4 - u3- 4 = O. 

If T > f P ,  thet, the crack surfaces slide past one another and the solution may be 
represented in the form 

~b345 = l i m  ~34 + ~5' 
T.--+fP 

fl345 = lim ~34 + ~5, 
T-'-+ fP 

where 4'5 and fl 5 are the solution to the following problem: 

(Yy5 - 'Xy5)"  + = ( r y s - i X y 5 )  - ,  Xys= -fY;5 ,+ v'5 + = v' 5-, Ixl< 1. (2) 

The boundary conditions (2) lead to the boundary-value problem for potentials 05 (z)  and 
~s(z) :  

[ , . -  + [ , 5 -  + ,5 ]  . 

+ [ , ,  + , 
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+ ,q5 + n5 + + + + 

[(i + f)q~5 - ( i -  f ) ~ 5 ]  * =  [ ( i - f ) ~ 5  - (i + f)~25] -, Ixl < 1. (3) 

The first three equations of this system are called by Muskhelishvili homogeneous 
problems of linear conjugation. Multiplying the first equation or (3) by - f ,  the second by 
- i ,  the fourth by two, and adding, we obtain a fourth linear conjugation problem 

[(i +f)q~5 + ( f -  i)q~ + ( f +  i)f~5 + ( f -  i)~5] + 

= - [(i +f)~b5 + ( f -  i)q~5 + ( f +  i)f~5 + ( f -  i )~5] - -  (4) 

Taking the relationships q~5 (o o ) =  0, f~s (o o )=  - i ( T -  f P )  into account, we find from (3) 
and (4): 

~ 3 4 5  = - P / 4  + i( T -  fP  )(  l - z (  z 2 - •2)-1/2)/2, 
(for T >  f P )  

~~345 : - 3 P / 4  - ifP - i( T -  f P  )(1 + z(  z 2 - 1 2 ) - ' / 2 ) / 2 .  

On the crack contour 

Yy345 - -  P, + _ (x + 1) 1/2 + = gy345=fP ,  u f 4 5 - u 3 4 5 = ( z - f e ) ~ ( 1 2 - x  2) 

We note that in the given case a change in the order of external-load application led to a 
change in the stress and strain fields in the elastic plane. In particular, tangential stresses 
appeared on the crack surfaces, reducing the mutual displacement of the surfaces. 

2.2. Compression-unloading of a plane with a crack 

Let us consider the compression of an elastic plane containing a crack 2l long, forming 
an angle fl (0 < fl < ~r/2) with the direction of action of the external load q. Depending on 
the orientation of the crack, on its contour there will be realized either surface adhesion 
conditions of the form (1) or sliding conditions of the form (2) [2]. We construct the 
solution of this problem in analogy with the preceding treatment. In the first case on the 
crack contour 

q 
q (1 - cos 2/3), X~ = ~ sin 2/3, u~ - u{- = 0, = - i  

while in the second 

=-q(1-cos2/3), xg =iq( -cos2/3), 

r + l  r .  (u~ - u [ - ) = - - ~ - - q  tsm 2 / 3 - f ( 1  - c o s  2/3)](l 2 -  x2)  1/2 

It is not difficult to show that sliding of the crack surfaces occurs in the 0 </3 < arctg(1/f)  
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range and adhesion in the arctg(1/f)~< fl ~< ~r/2 range. After  the load has reached a 
certain value q0, let unloading begin. We construct  the solution by  the method indicated 
in 2.1. At the beginning of the unloading process there will be adhesion of the crack 
surfaces regardless of the crack orientat ion since the shear stress should change sign, i.e. 

Yy~2 -- - q (1 - cos 2fl) ,  X + - q sin 2fl, y 1 2  - -  2 

u~ 2 - u~- 2 = 0, for  fl ~ [ a r c t g ( 1 / f ) ,  , r /E l .  (5) 

For  the case in which fl ~ [0, arctg(1/f)] ,  

Yy~2 ~-- - q ( 1  - c o s  Eft),  Xy:~2=f_~(l_cosEfl)4 (q-qo____~)2 sin 2fl, 

_ t ¢ + l  r .  
U?2 - -  U l 2  = - - ~ - q 0  [sin 2fl - f ( 1  - cos 2 f l ) ] ( l  2 - x2)  '/2. (6) 

With a further increase in load, slippage of opposite sign will appear. Using (6), from the 
c o n d i t i o n  X;5:12 = fYyl:l:2 we obtain the limits of the interval of renewed slippage 

0 < fl < a rc tg (1 /A) ,  A = f ( q 0  + q)(qo - q)-l (7) 

In this interval the following conditions are satisfied on the crack contour:  

(Yya-iXya)+=(Yya-iXy3) -, Xy3 =fYy~, v ' ~ - = v ' 3 ,  Ix l<  1. 

Solving the problem, we obtain on the crack contour  

Yy~ = - ½ ( q -  q . ) ( 1  - cos Eft),  Xy~ = - ½ f ( q - q , ) ( 1 -  cos Eft),  

x + l  . 
u~ - u 3 = ---~--- (q  - q , ) [ s i n  213 + f ( 1  - cos 2 f l ) ] ( l  2 - x2)  I/2, (8) 

q0(1 - f tg /3)  

q * =  (1 + f t g f l )  

Taking (6) into account,  in the renewed slippage range we have 

Yy~23 = - ½q(1 - cos 2fl) ,  Xfi23 = - ½fq(1 - cos 2fl) ,  

K + I  
u~-23 - u[-23 = - ~ g  q[sin 2fl + f ( 1  - cos Ef t ) ] ( /2  - x2)  I/2. 

For  a r c tg ( l /A)  ~< fl ~< a rc tg (1 / f ) ,  the stresses and displacements on the crack contour  are 
calculated from (6), and for a r c t g ( 1 / f )  ~< fl ~< , r / 2  f rom (5). After  load removal, the elastic 
plane returns to the initial state regardless of  the crack orientation. 
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2. 3. On hysteresis of the cracked medium 

Let us use the results obtained in 2.2 for explanation of the hysteresis of the cracked 
medium. 

Let an elastic plane contain cracks having a certain characteristic length 21, having 
equiprobable distribution over direction. We assume that crack concentration is small and 
that we may neglect the mutual influence of the cracks. The plane is subjected to uniaxial 
compression by a uniformly distributed load applied at infinity. We note that the method 
proposed here makes it possible to solve analogous problems for other cracked-body 
loading cases as well. We isolate a typical square having side L >> 1, containing a single 
crack of arbitrary orientation. For it we determine the effective Young's modulus for 
loading and for unloading. This question has been investigated for loading in [6]. 

We consider two stress-strain states for the isolated square (Figure 1): the first is actual 
loading with slippage of the crack surfaces and the second is loading by forces that ensure 
adhesion of the surfaces. Applying the theorem on the reciprocity of work, we find: 

= p L A q -  ~_f" ~( u~ - u [ )dx .  (9) qLAe 

The effective Young's modulus E m is realized for the first state, and the intrinsic modulus 
of elasticity E for the second. As a consequence, Ap = p L / E ,  mq -~- qL/Eal ' and from (9) 
we have 

1 1 t ~'(u~- - u i - )  
E a , - E  ~-f dx,  • = p  sin/3 cos ft. (10) , - l  pqL 2 

We finally obtain 

[ ]-' E#, = E 1 + 2~rl----~2L2 sin 13 cos fl (sin fl cos fl - f s in2f l )  (11) 

For unloading from q0 to q ,  adhesion of the crack surfaces is realized. At this stage the 
effective elastic modulus of the square coincides with the intrinsic modulus of the material. 
Then sliding of the surfaces is renewed. This process is described by (8), but now we take 
as the first state the action on the square (unloaded to force q , )  of a load of opposite sign, 
causing renewed slippage of the surfaces. Here the effective Young's modulus Eau is 
realized. As the second state we consider the same loading as in the first case. Application 

Fig. 1. Application of the theorem on the reciprocity of work. 

~ - - p  
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of the work reciprocity theorem in this case leads to the relationship 

1 1 f ,  T ( u ~ - - u  3 )  
Eta,,. = 2 + - -  - - -  dx. (12) J - t p ( q  - q , ) L  2 

Taking into account (8) and (12), we find 

2~rl2 ] - l  
Eau = E 1 + ~ sin/3 cos fl (sin fl cos fl +fsinZfl) . (13) 

We further assume that a large number N of the squares just considered are located one 
after the other to form a long strip; there is an equiprobable distribution of crack 
directions in the squares. The average strain for this strip under longitudinal loading by a 
force q will be (a = arctg(1/f)) 

( , , ( q ) )  = q [ / ' a l  f[1 ~r12 sin fl cos fl (sin flcos f l - f s i n 2 f l ) l d B  2 N 1  
N [ J  o g t  + L ----~ j ~r 

t"rr/2 1 . ^ 2N 

+ Jo -]- 
Here summation is replaced by integration since the average step for crack-direction 
variation is small. Evaluating the integrals [7], we obtain 

ql ,2( 1 i)]  
( q ) = ~  1 + ~ - ~  arctg f l + f 2  • 

As a consequence, the effective elastic modulus for the cracked medium under loading is 
calculated from the formula 

[ ,2( 1 i ]l 
(Et) E 1 - -  arctg 

= + 2L 2 f 1 + f 2  

When f ~  ~ ,  we have (Et)  = E, which agrees with the physical considerations. Arguing 
in similar fashion and using (7), (13), for the case of unloading of the plane we obtain 

[ , 2 (  , A +  4,q0 )1 
( E , ) = E  1 + - ~  arctg A I+A-------- ~ ( q ° - q ) ( l + A : )  2 

For q = q0, we have ( E , )  = E, i.e. the intrinsic Young's modulus of the material may be 
found from the slope of the (%) = (%(q))  curve at the initial instant of unloading. This 
known experimental fact was predicted qualitatively in [6]. 
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The strain for the cracked medium under unloading is determined from the formula 

q0 dq q + arctg f 1 + f 2  ( 'u)  = ( % ) -  ( E . ( q ) )  - E ~ qo 

.,.0[ i+ , .+qo  q ,qo 
1 + f 2  1 + A  2 2q0 + 2fqo 

The (~) - q diagram for a compression-unloading cycle takes the form of a loop running 
clockwise. When the load rises from 0 to some value q0, the diagram is a straight line 
q =  ( E ) ( c ) ,  ( E ) <  E. With unloading, the effective elastic modulus depends on the 
magnitude of the external load. The intrinsic modulus of the material is realized at the 
initial instant of unloading; when the load is removed the cracked plane returns to the 
initial undeformed state. The area bounded by the q = q((~)) curve represents the specific 
energy dissipation of the cracked plane over a single compression-unloading cycle. 

3. Nonaxisymmetric compression of elastic space with a circular crack 

3.1. Statement of  the 3D-problem 

We consider a linear elastic isotropic space with circular mathematical crack S, given by 
conditions 

x 3 = 0, r < a, (14) 

where a is radius of the crack, r 2 = x 2 + x 2. Let the space be compressed uniaxially by a 
constant load - p ,  applied at infinity to an area, defined by a normal (quite generally) 
n = {0, sin r ,  cos fl), where fl is an angle between the compression direction and x3-axis. 
The value of this angle is supposed to be such one that a mutual sliding of the crack 
surfaces takes place. Tangential and normal contact stresses are bounded by Coulomb's 
law. Coefficient of friction is denoted by f .  

We construct the solution of this problem by the method of superposition. Firstly, as in 
[8], a simple problem of elastostatics about the compression of continuous space by  the 
former load should be solved. When elastic material is clamped at the origin, displace- 
ments to the directions of x 1, x 2, x 3 axes are 

p p x  1 o 

ul 2/~(1 + v ) '  

- p  
u ° ([1 - (1 + v) cosZfl]x2 + (1 + p) sin/3cos/3x3), 

2/~(1 P )  + 

P 
u° 2#(1 + p) ( - ( 1  + v) sin/3 cos/3x z + [ -  1 + (1 + v) sin2fl]x3}, (15) 

where # is shear modulus, v is Poisson's ratio. Then using general Hooke's law and 
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Cauchy's geometrical relations, we find the stress vector in the place of the crack S (14): 

t ° ( x l , x 2 , 0 ) = l o ° 3 ( X l , X 2 , 0  ) = - s i n f l c o s f l  , r < a .  (161 

[o°3(x,,x2,Ol - c o s : B  

The absolute value of tangential stress o°3(xl, x 2, 0) is greater than it is allowed by 
Coulomb's law for the cracked space when a r c t g f < / 3  < ~r/2. This range of/3 is supposed 
in formulation of the problem. As a working hypothesis it is assumed that tangential 
o°3(xl, x 2, 0) and normal o°3(xl, xz, 0) stresses from the solution (16) for r < a are the 
contact stresses o~3(x 1, x 2, 0) and o~3(x 1, x 2, 0) arising on the crack. Below we shall show 
that this is valid. 

According to Coulomb's law we find the contact tangential stress 

o~3(Xl, x2, O) = - f p  COS2fl, r < a. (17) 

Hence, the contact stress vector of perturbations, due to the crack S, is 

t (x , ,  x2, O) = 

ol~(Xl, x2,0) 
o2~(xl, x2, o) 
o33(x1, x2, 0) 

= cos fl (sin fl - f c o s  fl) r < a .  (18) 

3.2. Calculation of the relative displacements from the traction 

In order to make clear the following we reproduce some fragments from [9], writing some 
expressions in a form which is more convenient to us and preserving the basic notations of 
this work: u is a column vector of perturbations with components u i (i = 1, 2, 3), G is a 
matrix with components Gij(i, j = 1, 2, 3), and so on, x and ~ are (Xl, x2) and (el, ~2) 
respectively and f d x  means integration over the whole (Xl, x 2) plane if there are no other 
specifications. 

Displacement components u i are continuous outside S, but in S 

x 3 ~  + 0  
[u,lx3= -0 = b,(x) ,  (19 t 

where ~ x )  is an unknown vector of the relative displacements of the crack surfaces. If the 
vector t (x)  were known also outside S then the displacements in each half-space could be 
represented through the Green's matrices G ±(x, x3) in the following form: 

u+(x ,  x3) = - fG+(x-x ' ,x3)t(x ' )dx ', x3>O, 

u-(x, x3)=fG-(x-x' ,x3)t(x')dx' ,  x3<0, (20) 

because a concentrated force f, applied to the point x = 0 of (x 3 > 0) -ha l f -space ,  



produces displacements G+(x, x3) f in 
Fourier's transform of (20) gives 

U+(~ ", x3)  = - 2 ~ r ~ , +  (~ ", x3)~(~'),  

fi-(~', x3) = 2~rl~,-(~', x3)l(~'), 

where 

](~)=l ff(x)e'¢'Xdx, 

this half-space 

X 3 > O, 

X 3 < 0, 
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and analogously for x 3 < 0. 

(21) 

(22) 

ff.X = ~lXl "4- ff2X2 and the convolution theorem is used. Substituting relations (21) into the 
Fourier's transform of (19) we can find 

t (~ )  = _ -2-~-A(~')~(~), (23) 

where 

A(~') = [G+ (~', 0) + ( ; -  (~', 0)] - '  (24) 

Applying the reverse Fourier's transform to (23), we obtain 

t (x)  = - --L-1 ") e-iLxd~ = 

4~r 2 

-- 897 " 3 1 f A ( ~ ) d ~ f b ( x ' ) e ' r ' ' x ' - x , d x ' '  (25) 

The integral over x '  in (25) can be simpfified by integration along ~.x' = tl~'l and then by 
integration over t: 

t (x)  8~ 31 fA(~) f_" f~ ( t ,~ l ) e 'm ' ' - n ' x~d td~  (26) 

where 

= g/l~l ,  I~l = (~'? + ~ ) ~ / 2 ,  (27)  

and 

b(t, 7) = fsb(x ' )8(  / - n.x)dx' (28) 

is Radon's transform of the vector-function b(x') [10]. 
After changing to polar coordinates in ~'-space and integrating over I~1, using homogene- 
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ity of the first order of matrix A(~), the expression (26) results in 

t ( x ) = - - - ~ - I  in4~rZ I ='A(~l)f ' ' -(71"x'~)d~/'  (29) 

where 

1 f ~  b ( t , ~ ) d t  
f ( z ' ~ ) = 2 - ~ i  _~ t ' - -7  ' (30) 

f"(z, 77) means 02f(z, ~)//0Z 2. Here the ordinary notation [5] for the limiting value of a 
function is used. Since the vector t(x) is known when r < a (18), (29) is an integral 
equation for b(t, n). 

If upper and lower half-spaces consist of the same material, then we obtain, using [9], 
that matrix A(~) is symmetrical and given by 

A(~) = ur/F/2 1 - pr/] • 
0 0 

(31) 

We simplify equation (29), replacing the integrand by its real part, taking into considera- 
tion the symmetry of matrix A(*I) and applying the Sokhotzki-Plemelj formula [5]: 

t (x)  = ~ 2  fnl= lg"(~/'x, ~/)d~, (32) 

where 

g(t,  ~/) = A(~/)b(t, ~/), Itl < a. 

Using the paper [9], one can find that Radon's transform of the crack-surface mutual 
displacement vector, which corresponds to the stress vector (18), is given by: 

[ 0 ] 
2, 4 ( 1 - p )  - P  cos f l ( s i n f l - f c o s f l )  . b( t' rl ) = ( a2 - t ) -~2  -- -~  o (33) 

Now the crack-surface relative displacement vector can be found by using the reverse 
Radon's transform formula: 

1 
b(x)  = -~-~i flnlffi lf '( ,1.x - Oi, r/)dr/. (34) 

After some computations we obtain 

b(x)  = 8(1 -~__~__ ~ ) u ) ( a  2 - r2) 1/2 [ o ,] 
- p  cos fl (sin 1 3 - f c o s  fl . 

o 
(35) 
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It should be noted that in this non-axisymmetric problem the components of the relative 
displacement vector b~ and b 3 are equal to zero and b 2 depends on the polar radius but 
does not depend on the polar angle. 

3.3. Field of displacements 

Now when the vector b(t, ~/) is known we find the displacement vector u(x, x3). For the 
half-space x 3 > 0 we obtain from relations (21) and (23) 

f i+(~,x3)=~2+(~,x3)A(~)b(~)= ~---~(~+(~,x3)A(~) fsb(x')e'~'X'dx',  (36) 

and after integration along ~.x' = tlffl in x'-space 

fi+ (~, x3 )=  ~-~ 1~+ (~, x3)A(~)f_aab (t, ~) eil~ltdt, (37) 

Applying the reverse Fourier's transform we obtain 

1 a v 
. +(x, x , )=  f a  + {¢, x,  t, rl) eil¢l"-n'~'dtd~. (38) 

Fourier's transforms of Green's matrices are available from [8]: 

G(~' x3)= { [B---(~-[B(~')+ x3C(~)]x3C___~] e Irlx'e-j~lx3 

where 

1 
B(~') = 2¢rt*l~l 

(x3 > 0) (39) 
(x,  < 0) 

c ( ~ )  = - - -  

1 - v + v ~  2 -v~012 - ½ ( 1 - 2 v ) i ~ l  

-v~,~12 1 - v +  v~21 -½(1 - 2v)i~72 

½(1 - 2v)i711 ½(1 - 2v)in2 1 - v 

I l 1 ~/~ T~I~2 - i ~ h  

47r# '1"]1'172 ,q2 _i1~2 . 
L -i~/1 - i~2  

From formula (38) by changing to polar coordinates in ~-space and integrating over I~l we 
obtain 

l X 3 
U+(X, X3)= ~ "[~Q = 1B(~)A(~)f '(z,  ~)d~ + ~ ~I,Q=I C(~)A(~) f ' (  z, ~)d~/, (40) 

where z = ~l.x - i x  3 .  It should be noted that there is an inaccuracy in analogous formula 
(5.4) from [9]. 
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Substil~ting the necessary values in formula (40) and simplifying we obtain 

f o  2~r 7 . X  - -  i x  3 - -  a u+(x, x3) = ct 1 - v (7.x - ix3) In + 2a 
½i(1 - 2v)72 7 . x -  ix 3 + a 

+ x3I: " 
L - - i 7 2  

[ 7 . x - i x a - a  2a(7 .x - ix3)  ]} 4 dq~, 
In 7.x - i x  3 + a (7.x - -  i x 3 )  2 - -  a 3 

(41) 

where 

- p  cos fl (sin fl - f c o s  fl) 
~r 2/~ (2 - v) 

[cos:] 
. 

7 =  72 sin 

Similarly, for half-space x 3 < 0, we find 

(I ° u - ( x ,  x3) =,~o2~/_ _ 1 - 
-½i(1 - 2v)72 

(7.x + In 7.x + i x  3 - -  a ] ix3) + 2 a  
7 . x  + i x  3 + a ] 

X 3 

+Ti 
 l.lr a 1} + d~. ,122 [lln wx  + ix3 2a(7"x + ix3) 
i72 J t 7 . x  + i x  3 + a (7.x + i X 3 )  2 - -  a 2 

(42) 

The integrals in (41) and (42) can be calculated after reducing them to a form, suitable for 
application of the theorem of residues. Let us calculate for example, u~(x l, x2, x3). 
Changing to a complex variable w = e i~ we obtain 

u;(x,, x=, x,) 

ft,~ ( ( w - - w l ) ( w - w 2 )  [ ( ixl+x2 x3 i x l - x 2 )  = a  In - ( 1  --v) I - - - + - -  
i- 1 (td - w3)(w - w4) 2 w 2w 2 

x3( 2 1 )] 2 a ( 1 - u )  
+-g '~-~+7~ ~ i,~ 

ax3 (w 2 - 2 +  1 )  w 2 ( i X l - l - X 2 ) + 2 X 3 t O - I - i X l - - X 2  } 
2i(ixl + X2)2 ~-~ (tO---~'~l)(-'~--~02--~-----~-a~---~04) dw, (43) 

A-x3+__i (a-B ) - A  -- x 3 + i(B + a) 
£01,3 i x  1 -~- X 2 ' 0 )2 ,4  = i x  I "at- X 2 ' 
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• . I / 2  

A, B =  ((((Xl 2 + x  2 + x  2 -  a2)2+ 4a2x2)l/2+ (x~ +x~ +x  2 -  a2) ) /2 )  . 

We investigate a disposition of the singular points relatively to the integration contour. 
With exception of the following cases: 

( 1 ) x3=O 

and 

(2) x I = x 2 ~--- 0 simultaneously, 

we obtain that 

Itoll < 1, 

The integral 

I0.131 < 1, 1'021 > 1, I0.141 > 1. (44) 

J(to, ,  0.12,0.13, t o 4 ) = x 3 ( v -  1.25)f~1=1 o.111n 
(to- to,)(to- to2) 
( 0 . 1 - 0 . 1 3 ) ( 0 . 1 - 0 . 1 , )  

dto (45) 

from (43) can be calculated by means of investigation of its partial derivatives. Using the 
values of o.12 and 0.14 from (43), we obtain 

B + a  ) 
J ( 

- ) arctg ~rrn , 
X 3 . 4 V  5 ~" A + X 3 

where the unknown natural number m is still to be determined. We get rid of other 
logarithmic addenda by integrating them by parts. Then we find all other integrals by 
means of the theorem of residues, remembering that from the singular points only to l, °:3 
and 0.1 = 0 are located in domain I0.11 = 1. 

After performing the following substitutions 

wl ~1 WE W2 
"= , 093 , 0)2 - -  ~ 094 ~ - - ,  

tol  i x  I -t- X 2 i x  I + X 2 i x  1 + X 2 i x  1 + x 2 

where a bar over w means complex conjugation, the real part of the expression for U 2 ( X I ,  

x2, x3) can be separated. From the condition of vanishing of the displacement at infinity 
we find the constant m -- 0. Finally 

B + a  
u~(xl,  x2, x3) = a~r x3(4v - 5) arctg A + x 3 - - + 2 ( 1 - v ) ( B - a )  

-2 (1  - v) 
(n-a)(x l + - - x )(B - 

(A - x3) = + ( B - a )  = 2(x~ + x2) = 
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X3(X 2 -  X2)(A -- x 3 ) ( B - a  ) ax3(x  2 -  x 2 ) 

2 [ ( A - x 3 ) 2 + ( B - a ) 2 ]  2 2 ( x ~ + x g ) ( A 2 + B 2 )  

× [2B(A - x3) (B- a)+A((A -x3) 2- (B- a)2)] q- - -  ax3A 
A 2 + B 2 

+ 
ax3(x22 - X 2 ) 

2[ (A-X3)2+  (B-a)2]2(A 2 + B E) 

X [2B( A - x 3 )  (B - a ) - A ( ( A  -x3 )  2 -  (B - a)2)] }. 

Similarly, from the expression (41) we obtain 

(B-a)[A(1- 2v)-x3(1 + 2v)] 
u~(x"x2'x3)=a~rx2 2(Xl 2 + x~) 

(46) 

2Px3(B-a ) + + 
(A - X3) 2 "{- (B - a) 2 

B+a 
+ (1 - 2 v )  arctg A + x  3 

( 1 -  21,)(x 2 + x ~ ) ( B - a ) ( A - x 3 )  

2[ (A-x3)2+(B-a)2]  2 

ax3[A(A  - -  X3) "k B(B -- a)] 
(A: + B:)(x~ + x~) 

and 

u~(x,, x,, x3) 

ax_~ [__A (__A -_ x~ )_ - L( S - ~_ ! ] - } 

+ (A'+ S')[(A - x3)' + ( S -  a)'] 

° axx x3{l[w: 1 
B - a  (x2+x2z) 2 Im (w _w2)(w _~2) 

+ 4X3im[ ] 
(x~ + x~) ~ ( w , - w ~ ) ( w , - ~ )  

(47) 

3 [ : ]  
x2 + x2 Im (Wl - w2)(---w~ - ~2) 
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[ 1 ] [ 1 ] 
+3  Im (w 1 __W2)(W 1 --W2) + 4 x 3 I m  Wl(Wl--W2)(Wl--W2) 

_ ( x 2 + x 2 ) i m [ w 2 ( w l  -w2)(wll - ~ 2 )  ]}" (48) 

In accordance with formulas (41) and (42) the displacements Ul(X 1, x2, X3) and u~'(x 1, 
x 2, x3) can be obtained from u~(xl, x2, x3) and u~(xt, x2, x3) respectively by 
multiplying them by - 1 and by substituting - x  3 instead of x3; the displacement u3(xl, 
x 2, x3) can be obtained from u~(xl, x2, x3) by substituting - x  3 instead of x 3. In" 
particular, from (46), (47), (48) and the similar formulas we obtain 

O ) = u f ( x , , x 2 , 0 ) = O ,  (r>~a) 

u?(x,,x=, 

u?(x,,x=, 

0 ) = a ~ r ( 1 - 2 v ) x 2 [ a r c t g ( a ( r 2 - a 2 ) - l / 2 ) - a ( r 2 - a 2 ) l / 2 r - 2 ] ;  (49) 

0)  = 0,  

0) = ___hair(1 - u)( a z -  r2) '/2, 

u f ( x , ,  x: ,  0) = a~r(1 - 2 u ) x 2 2 .  

The following expressions 

u~(0 ,  0, x , )  = u,-+ (0, 0, x , )  = 0, 

u~(0,  0, x3) = +a~r [(5 - 4v)x3 ( a r c t g 9  -T- 2 )  + 4a(1 - v) + - -  
ax 2 

a 2 + x 2 

(50) 

can be obtained more simply directly from formulas (41) and (42). 
According to formulas (50) the mutual displacement in Xl-direction and the mutual 

penetration in x3-direction of the crack surfaces are absent. Hence, the working hypothe- 
sis, adopted in 3.1, is valid. The sum of displacements u°(xl,  x2, x3) and U(Xl, x2, x3) is 
the solution to the problem on compression of the cracked elastic space that we wanted to 
find. Now the idea of Section 2 can be extended to the 3-D case. 
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